Tags :
Schedule a Call Back
Prabhat Singh Parihar, Vice President (Technical Head), Mangrol Plant, JK Cement, talks about the challenges faced by cement plants in maintaining refractories and the important properties of refractories that ensure smooth functioning of the processes.
Explain the types of refractories you have in your manufacturing unit. What are their respective purposes?
At JK Cement’s MGR plant, the following types of refractories are used:
What are the key materials used in building a refractory lining to the kiln in your organisation?
For kiln refractory lining, a major portion consists of refractory bricks, castable for kiln inlet and outlet sector, mortar, ceramic paper, shim plate and anchors.
What are the key properties of a refractory that support the cement making process?
Cement manufacturing is an energy intensive process. Burning alkaline raw materials (reactive) combined with smaller constituents of metals and abrasive raw materials at very high temperature is a major challenge. Therefore, a good refractory that can withstand high temperatures while retaining required strength and that is resistant to chemical properties of the alkaline raw materials is crucial. Besides, chemical attacks from sulphates or chlorine from the kiln feed or fuel or alternative fuels are other factors that need to be factored in.
Major refractory properties that contribute to cement manufacturing are:
Thermal properties
Chemical properties
Refractory material is exposed to high temperature and reactive components of kiln feed, fuel, and alternative fuels. The major reactive components are the metal sulphates or chlorides that can penetrate through the pores of the refractory and get deposited at the core. The cold face of the refractory causes’ loss of strength of refractory material. The mark of a good refractory is its ability to remain inert.
Physical properties
Bulk density is an important property of refractories. A higher bulk density material means that it has a minimum porosity which minimises chemical attacks on the refractory.
Porosity can be defined as the percentage of open pore space in the overall volume of refractory. Pores on a refractory material, provides a site for absorption to the alkali sulphates or chlorides which get absorbed from the hot face side to under refractories and erodes and loses strength from the core of refractories. That is why a good refractory shall have a minimum apparent porosity of 0.2 per cent.
Cold crushing strength: As refractories must withstand a certain mechanical load. The load of itself and the mechanical stress generated due to expansion (radial and axial). A high cold crushing strength means that it would have less breakage while installing, with a good RUL and along comes the draw-back of brittleness
of refractory.
Thermal expansion or permanent linear change. Like all materials, refractory also expands at high temperatures. While a newly installed refractory expands to upto 2 per cent, the permanent expansion and thermal expansion shrinkage cycle deteriorates the strength and service life of the refractory.
Tell us more about the porosity and permeability of the refractory.
Porosity is the volumetric ratio occupied by pores present in refractory material. Porous material is not suitable for refractory application as it has low bulk density and low cold crushing strength.
Apparent Porosity: The ratio of the total volume of the open pores in a porous body to its bulk volume expressed as percentage, of the bulk volume is apparent porosity.
The significance of apparent porosity is as follows:
Closed Porosity: The ratio of the total volume of the closed pores in a porous body to its bulk volume expressed as a percentage of the bulk volume is closed porosity.
True Porosity: The sum of the apparent porosity and the closed porosity is true porosity.
Permeability: It is the measure of flow of gases through pores within the refractory body, and it indicates the extent of pore linkage. Permeability of refractories gives an indication on how well the refractory will stand up to molten slag, a melt or to a gas penetration.
Permeability of refractory is directly influenced by refractory material and apparent porosity of the refractory. As the apparent porosity of the refractory increases it provides a more active site for absorption of volatile sulphates or chlorides into the refractory.
Typical cases of permeability are:
What is the maximum temperature that a refractory can withhold? How does its strength differ from ambient temperature to high temperature?
There are four key parameters for defining the maximum temperature a refractory can
withhold are:
PCE > RUL > Service Temperature > Operating Temperature
As a thumb rule PCE temperature is about 15 to 20oC more than RUL, whereas RUL should be about 150 to 200oC more than service temperature.
Service temperature is decided in such a manner that at any given time it is always higher than operating temperature (operating temperature + temperature increase in case of process fluctuation).
Numerous inert or non-refractory materials can decrease the service temperature as they form a new eutectic point with an active refractory compound. It is a common practice to make small panels of refractory by installing extra retainers to hold the dead weight of refractories.
Tell us about the installation and operating process of refractories in the kiln.
The lining of refractory material in the rotary kiln is almost exclusively made up of refractory bricks. Refractory castables are used in part only in the kiln inlet and outlet. The bricks work creates an arch in the kiln that is self-supporting and which correctly fits with the kiln shell.
Due to lack of anchoring, the lining must be supported during installation. Two type of bricks installation in a kiln are:
Installation with rotation of kiln – Spindle Method: The spindle method or jacking method is a classic procedure for lining rotary kilns. The bricks are placed in the lower half of the kiln, then the wall segment is supported with spindles so that the kiln can be rotated. After a quarter turn the next segment is lined and so on. The spindle method is a cost-effective method and can achieve excellent results. However, the kiln must be rotated again and again because the individual sections cannot be more than five metre in length. Moreover, the spindle method is suitable only up to a kiln diameter of 4.4 metres.
Installation without rotation of the kiln – Brick Lining Machine: A method in which the rotary kiln must not be rotated while lining (and cannot be rotated) work based on the same principle i.e., first, the lower half of the kiln is provided with the refractory bricks, because no support is required in this area and then brick lining machine will be installed for the remaining upper half area and each ring is supported by a hydraulic jack of brick lining machine until its completion.
What are the standards set for refractories in a cement kiln?
For a kiln, the following types of refractories are used: Refractory Brick, Castable and SS Anchor.
The refractory bricks for the kiln brick lining, high alumina ISO bricks of 40 per cent, 60 per cent and 70 per cent alumina are used. Abrasive resistant castables have a high service temperature and are desired such as grade- LC-60, 90 SiC and CRC as the quenching/cooling zone of the kiln handles the hot and abrasive sintered clinker. SS310 anchors are preferred over SS304 only for kiln and burner pipe.
The main standards that a refractory supplier must meet are:
Refractory Under Load (RUL) for refractories it typically between 1400oC to 1500oC
Permanent Linear Change (PLC) is an expansion of a newly installed refractory. This generates an excessive mechanical load on refractory. PLC for refractory should be less than 1.5 per cent.
Pyrometric Cone Equivalent (PCE) for a refractory should be around 35 degree Orton.
Spalling Resistance are the numbers of heating and cooling cycles that a refractory can hold without any failure. Spalling resistance for refractory is desired to be above 30.
Geometry of the refractory is mostly important and no compromise can be made with it, albeit a tolerance of 1.5 to 2 mm can be considered. Same applies for the SS anchors.
What is the role of technology and automation in refractories for cement kilns?
Since the refractory work is very bulky and time consuming, lots of skilled man-hours are spent, which makes it one of the most cost and time intensive jobs. Shutdown even for a small duration of the plant is a major challenge. The introductions of new technology will help to ultimately overcome the refractory application cost and the installation time.
To overcome the above challenges, new processes/technology that are being implemented.
Brick Lining Machine: Before brick lining machine, the refractory applications required manpower for the transportation of refractory, installation of refractory and using jack for holding arch. All these procedures require a large manpower, both skilled and unskilled. In addition to that, it also takes a long time for installation.
The use of brick lining machines and portable belt conveyor, refractory materials are easily conveyed in a convenient way without any unnecessary stockpile lying around in the way of work. Since all brickwork can be done without rotation with the brick lining machine, the time lost in between tightening and loosening the jack and evacuating the manpower from the kiln while rotating is eliminated. A huge advantage is the completion of this process without the requirement of a huge manpower. A small team of skilled manpower can execute the work in a very precise manner and in a limited time.
Gunning/ShotCreting: For castable application in gunning, a batch of dry castable and binder or water are conveyed through a compressed air line to the mixing nozzle where they mix and get applied at application site. Conventional castable application requires a mandatory castable shuttering with material poured over and a vibrator needle, to set it in the right place. This makes it very time-consuming and chances of the castable not being placed properly is there which will take enormous time and manpower to rectify the application. For a shuttering that is not set properly it needs to be broken and new castable will be reapplied hence increasing cost of breaking and re-applying.
For a point place where huge quantum of castable must be applied, Gunning is preferred as it has its advantages such as:
What tests are employed to check the refractory for defects and at what intervals are these tests done?
There is only a limited number of methods available for a condition diagnosis of the refractory material. In practice, the following are used:
Measurement of shell temperatures: The chronological development of the maximum, average and minimum temperatures on the shell of the rotary kiln allows for conclusion to be drawn for the ratio between lining and coating build-up. Based on the velocity of the temperature changes, further development can be estimated. For example, if maximum temperature rises sharply while the average temperature remains the same or changes slightly, then this pertains to a limited, localised eruption and not overheating of the relevant kiln zone. One preferable option would be to continually check the kiln shell temperature by measuring infrared radiation.
Visual inspection from outside: Inspection or detecting peculiarities on the entire kiln plant are part of the routine task of the kiln personnel. Sudden changes in the surface colours due to increased shell temperatures are clear signs of damage in the lining. But most of the time, even more serious damage is already present. The visual diagnostic procedure therefore ranks last among potential tools, and it is primarily used to prevent further damage to machines.
The condition of the cyclone and vaulted ceilings should be checked regularly through the inspection openings in the ceilings to see if the transition between the brick masonry and the skin is flush. In addition, skin temperature should be compared to earlier measurements in order to gain information about the current refractory status.
Easily accessible part of the cooler, burner pipe or the kiln can also be inspected visually via inspection openings or kiln/cooler cameras. Such an inspection is especially suitable during sort down times as easy inspection measures.
Non-destructive measurements of residual brick thickness: The brick thickness can be measured relatively quickly using a residual thickness metre. But experience shows that generally no reliable measurement signals are provided. Residual thickness metres work with sensitive probe systems that can send and record high frequency electrical impulses. The metallic rotary kiln shell serves as a reflector to determine the residual wall thickness. This device also allows for the different electromagnetic properties of different refractory bricks and infiltration to be recorded.
Drill holes and chiselling out of windows: The residual brick height of the refractory material is determined along the rotary kiln by drilling with a brick drill (9-10 mm). The procedure and results are recorded in a drilling protocol. Brick damage is not always detected with the drilling samples. Using core drilling or chiselling of windows in critical spots, it is possible to detect crack formation or alkali filtration in addition to the residual brick height. However, the subsequent closure of the masonry is unsatisfactory with this method if the residual brick height is low.
What are the major challenges your organisation comes across with the refractory kiln?
What innovations in the refractory sector do you expect to see in the near future that will help better it?
The two main innovations that we foresee are:
AFR friendly refractory: Due to the increasing fuel cost and focus on sustainable ways of operations, the use of alternative fuels in cement industries is essential. Though, the use of alternative fuels is limited because of the high concentration of chlorine and sulphates which are susceptible to coating formation. Therefore, coating resistant refractories that are less prone to chlorine and sulphate attacks will increase the use of alternative fuels with a good refractory life. Moreover, with the enhanced use of AFR, we require good quality AFR friendly castable near AFR feeding zones.
Insulating Bricks: Refractories with low thermal conductivity and low radiation emissivity can help to save the heat losses that ultimately leads to saving fuel, instead of increasing refractory thickness. While by increasing the refractory thickness a loss of volume in pyro-equipment may affect the production capability of the system. Therefore, we required high alumina with low thermal conductivity refractory bricks to save the radiation loss.
–Kanika Mathur
Subscribe to our Newsletter & Stay updated
Holcim has agreed to sell its Russian business to its local management. When the transaction is completed, the business will continue to operate u...
ACC Limited has won the National Award for Safety Excellence (FY2021-22) at the 10th Global Safety Summit (GSS) in the Large Enterprise-Cement Man...
ThyssenKrupp Polysius’ Asia Pacific division has secured an order for two Polflame-type main burners for an unnamed cement plant. The equipment ...